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Cities can be compared to living organisms. They are out of equilibrium, opened systems that
never stop developing and sometimes die. The city’s growth is guided by needs in local distribution
and in communication among its parts. The local geography can be compared to a shell constraining
its development. In brief, a city’s current layout is a step in a running morphogenesis process. Thus
cities display a huge diversity of shapes and none of traditional models from random graphs, complex
networks theory or stochastic geometry takes into account geometrical, functional and dynamical
aspects of a city in the same framework. We present here a global mathematical model dedicated to
cities that permits describing, manipulating and explaining cities’ overall shape and layout of their
street systems. This streets-based framework includes an algebraic formalism, a static analysis of
cities’ main features (topology of first and second order, anisotropy, streets scaling) and a dynamical
model which from simple general rules can reproduce a large diversity of cities.

I. INTRODUCTION

The city is a living structure: it is an open system,
always in motion. A city is born, develops, heals over
injuries (war damages...) and sometimes dies in part or
totally. Its development responds to internal and exter-
nal constraints in such a way that local geography acts
as a shell that sculpts its overall-shape. As general living
systems, cities exhibit a huge range of diversity both on
their overall shape (that can be circular, sprawling, lin-
ear or even fractal) and on the appearance of their streets
systems (regular, organic, tree-like). Such a diversity of
street system can also be observed at the level of a single
city that has not developed homogeneously.
We seek out to show that this diversity can be explained
by some general underlying phenomena and a few rules
superseding traditional culture based explanations. Our
approach is streets-based: we consider an infinitesimal
piece of street as the elementary component of a city
and bet it contains all the necessary information. The
dual approach is to consider the build-up area (build-
ings, parks...) as the unit of formation. Several points of
view have been used in the past to model cities: cellular
automata, multi-agents systems, fractals, stochastic ge-
ometry, L-systems and graph theory leading to complex
systems’ theory.
Cellular automata and multi-agents systems have widely
and successfully been used to simulate the population
dynamics and of land use [1]. The fractal description
of cities [2] gathers these simulations into a theory and
point out the advantages of a fractal shaped city from
the point of view of the build-up area. Nonetheless the
basis of these models is either a discrete field or the map
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of a given city. They explain the global differentiation of
space when the street network is known or ignored.
Since the famous Bridges of Konigsberg problem by Eu-
ler, one is tempted to describe the city as a graph whose
edges are streets and vertices are their intersections. This
provides a relational representation of the city [3]. One of
the difficulties then is the particular embedding of these
graphs that make random graphs unable to stick to a
city’s map representation.
Stochastic geometry gets around this problem by consid-
ering stationary tessellations (Poisson Voronöı, Poisson
Delaunay or Poisson Line Tessellation, their superposi-
tions and iterations) that are geometrical objects em-
bedded in a compact subset of the space and deduces
geometrical random graphs from their induced topology
[4]. L-systems with procedural programming make a map
evolve from local coherence rules and input data that in-
corporate global constraints [5, 6]. The stochastic geome-
try approach gets good results at analyzing optimization
problems on street networks and L-system are success-
fully used in graphics but they do not explain the under-
lying phenomena at work to determine the appearance of
a city.
For a few years a complex networks based study has been
adopted to describe cities [7, 8]. But the main conclu-
sion is that a city behaves neither like a classical scale-
free network nor a small-world essentially because of its
spatial embedding [9]. Cities then clearly need a dedi-
cated mathematical framework. The scope of this article
is a streets-based approach of cities that allows analyz-
ing, manipulating and explaining cities’ morphogenesis.
In (II) we will define a mathematical formalism to handle
with cities both on a relational and a geometrical way.
We will present in (III) several description measurements
(topology of first and second order, anisotropy and streets
scaling) to obtain quantitative comparison elements be-
tween cities and exhibit some features of the global me-
chanic of cities system.
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Eventually we will present a morphogenetic model of the
city (IV) and its simulation (V). This model aims at re-
producing the diversity of cities from a small number
of basic principles and normalized input parameters as
much relevant for physicists as for town planners. No
sampling of space is required for the simulation.

II. CITIES’ SPACE

Since the famous resolution of the Bridges of Konigs-
berg problem by Euler [3] one is tempted to look at cities
with a formal and relational point of view: a city is a
graph whose edges are streets and vertices their intersec-
tions.
Nevertheless this approach does not take into account
the physical constraints (of being a functional object on
the plan) that are exerted on cities. Furthermore, it en-
hances a fundamental disjunction between intersections
- that would be objects of interest - and street segments
that would simply bind them. But under those street
segments / edges lies a characteristic geometry (straight
segments often, more intricate curves sometimes). Each
point of this geometry should be seen as an object in re-
lation with other similar objects.
This paragraph aims at introducing a terminological
frame that permits manipulating cities as ”continuous
graphs” embedded in a two dimensional Euclidian space.
The vocabulary used here is freely adapted from general
graph theory [10] to respond to specific needs.
To understand these needs, here is the way we import
a map in our framework. A map of a city has both a
topological aspect and on a geometrical one. That is
why we define the set of geometrical graphs canonically
associated with their geometrical projection. When im-
porting a map (via a .MIF file), the row data is coded
into a list of splines. Nevertheless splines are not easy to
handle with and we would like to replace them with seg-
ments. To that purpose we will consider it is possible to
transform a geometrical graph into a straight graph arbi-
trary close to it. Then the paradigm of degree two points
comes up. What sense do they make? To rectify the map
we have added vertices but we want to consider we have
got a new version of the very same object. In short, a
segment with its two extremities and the same segment
with its extremities and its midpoint should be seen as
the same entity. We define a measure on a geometrical
graph which allows to see that graph as a ?continuum?
and to consider each point of its geometry in the same
time. To end with our data rather represents street seg-
ments that actual streets. We need to reconstruct the
notion of ?street? or ?named street? from street seg-
ments and that way provide our map with a multi-scale
structure.

A. Graphs and planar graphs

Let S be a set, V (for vertices) a finite subset of S, E
(for edges) a symmetric part of V × V then G = (V,E)
is said to be a (undirected) graph.
A drawing of G is an injective function from V to R
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and from E to the set of continuous paths such that the
image of an edge has for limits the images of the vertices
it binds and does not pass through images of vertices it
does not bind. An edge-crossing is the intersection of the
images of two edges outside the image of V .
If there exists a drawing without any edge-crossing, the
graph is said to be planar (Fig. 1). The first character-
istic of city graphs is their planarity.

B. Geometrical graphs

A geometrical graph can be seen as a particular draw-
ing of a planar graph.
Let the available space A be a connected and compact
subset of R2, V a finite subset of A and E a set of almost
everywhere derivable paths included in A from one ele-
ment of V to another that do not intersect outside of V
then G = (V,E) is an element of the space of geometri-
cal graphs Gg(A). If E is restricted to straight segments
(G ∈ Gs(A)) , G is a straight graph. To a geometrical

FIG. 1. The representation of a graph by its symmetric ad-
jacency matrix (a). This graph is planar: it admits at least
two geometrical graphs as drawings (b).

graph G, one associates πG, the subset of A defined by :

πG = {x ∈ A, ∃e ∈ E, x ∈ e} (1)

πG is compact so we can provide Gg(A) with an Hausdorff
distance :

dH(g1 || g2) = max
x∈πg1

min
y∈πg2

||x− y|| (2)

A drawing G′ = (V ′, E′) is a rectification of the geometri-
cal graph G = (V,E) if V ⊂ V ′ ⊂ πG and if each element
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of E′ is a segment. G′ is not necessarily a planar straight
graph since edges can possibly intersect outside of ver-
tices (Fig. 2). The idea is that one should be able to add
to a geometrical graph as many vertices of degree two as
he wishes and still consider the very same mathematical
object. In this article we will admit that Pr1 and Pr2
hold for a large enough class of geometrical graphs:

Pr1: : Every geometrical graph admits a planar rectifi-
cation

Pr2: : Every geometrical graph is the limit of a sequence
of straight graphs

To get (Pr1), one has to sample an original graph with
enough additional vertices of degree 2 and a small enough
edges length. (Pr2) states that it is possible to sample
more and more to approximate any geometrical graph by
a straight graph arbitrary close to it in the sense of dH .
This is of practical importance as it allows to work only
with straight planar graphs, while original city’s maps
can have curved edges.

FIG. 2. A geometrical graph (a) and two of its rectifications
(b). The upper one is not straight because two edges intersect
outside of the vertices set.

C. Measure

As a compact part of A, πG is a polish space (complete
and separable) on which one can define a borelian mea-
sure µG. For instance

∫
G
dµG is the total length of edges

in G. This measure respects:∫
f(g) dµG =

∑
e∈E
|
∫
e

f(x) dµ1(x)| (3)

Where µi is the i-dimensional borelian measure, f a pos-
itive function and

∫
e

the integral along the path e. If

(sn) is a sequence of straight graphs with

sn −→
dH

G then

∫
f(s) dµsn →

∫
f(c) dµG (4)

If f is a continuous function defined on R
2 we have :∫

f(g) dµG = lim
ε→0

1

2.ε

∫
f(x, y).(πG⊕Bε) dµ2(x, y) (5)

where ⊕ is the Minkowski addition and Bε the closed
Euclidian ball of radius ε : x ⊕ Bε = { y ∈ R

2 ||x −
y|| ≤ ε }. So µG is a measure between µ1 and µ2 that
allows to make quantitative measurements on the whole
geometrical graph.

D. Hypergraph structure

If H is an equivalence relationship on E then
((V,E), H) is said to be an hypergraph. For instance
think of considering the map of a city and the relation-
ship ”these two edges are pieces of the same street”.
Let (V,E) a graph and R a reflexive relationship on E2.

Then the relationship R̂ defined by :

e1 R̂ e2 iif ∃ α1 = e1, α2, ... , αn = e2 ∈ E |
α1 R α2, α2 R α3, ...., αn−1 R αn (6)

is an equivalence relationship. From this, one can con-
sider Rθ :

e1 Rθ e2 iif (e1?2e2)∨((e1?e2) ∧ (](e1, e2) ≤ θ)) (7)

where e1 ? e2 means that e1 and e2 intersect, and e1 ?2 e2

that e1 and e2 intersect in a vertex of degree 2. ](e1, e2)
stands for the geometric angle between e1 and e2.
This Rθ allows recovering the notion of ”streets” even
if input data do not contain such labels. The algorithm
labeling streets segments with a street number does not
depend on its starting point and is fast to run. The
price to pay is that some special cases as forks of two
segments making a very small angle with a third one will
be considered as a single street. This over structure is
essential as it gives a way to analyze overall structures
of planar graphs, and in particular of cities. Here the
continuity condition is given in term of angle (geometry),
but it can be any desired local condition on the segments
characteristics.

E. Citiy graphs

We define pragmatically the set of city graphs GC as
the subset of GS that represents an existing city or a city
that could have existed. We restrict this definition to Gs
since a lot of cities’ streets are straight and even if it is
not the case there exists a straight approximation as ac-
curate as we want (Eq. 4).
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FIG. 3. A straight graph (a) and its hypergraph structure
(b) deduced from Rπ/20. Viewed as a city’s map, this graph
contains 7 streets segments but 3 streets.

The very purpose of this article is indeed to describe the
particular properties of such a set. For instance a city
graph is connected, have a few triangles...
In the following, we will write C = (V,E) a city. We
canonically provide C with an hypergraph structure from
a relationship Rθ. For the sake of simplicity we keep
the same notation to designate the hypergraph : C =
((V,E), H). Its borelian measure is written µC .
The relational aspect inherited from a simple graph struc-
ture allows us to define the set of faces F . Euler’s equality
is respected so that: ]V − ]E + ]F = 1. To each edge
e we associate the set V (e) of its extremities in V and
to each point v ∈ πC we associate E(v) the set of edges
that pass through it. N(v) is the degree of a vertex.
We partition V = V1 ∪V2 ∪V+ where V1 contains all ver-
tices of degree 1, V2 of degree 2 and V+ of higher degrees.
Vertices in V1, V2 and V+ are respectively terminations,
junctions and intersections. Elements of V2 will be seen
has sampling artifacts used to fit the curved geometry of
the city.
Elements of E are called streets segments, those of H
streets.

III. CITIY SPACE FEATURES

Due to their spatial constraints, real geometrical
graphs do not behave as classical complex networks
(small-worlds or scall-free networks) [9]. Real cities dis-
play structural, geometrical and functional features. For
instance a real city aims both at lodging its inhabitants
and at providing them with an efficient access to geo-
graphical and human resources. These constraints log-
ically affect the structure of a city graph. The pur-
pose of this part is to define some mathematical tools
that will quantitatively measure structural differences
between city graphs. Classical measures from complex
networks theory (efficiency, robustness, centrality, degree

correlation) have been investigated in [11–13]. The mea-
sures presented below have been chosen from the observa-
tion of specific phenomena on cities. Each property will
be illustrated by the city of Amiens in France: the whole
city and its center (Fig. 5). We have chosen Amiens for
the following reasons: a settlement in a nearly flat land,
with a river whose influence is visible but not too con-
straining, big enough to be representative but sufficiently
small to allow fast calculus.
We have imported a vectorial map of Amiens in a cal-
culus framework (Matlab) and successively: rectified it
by taking care of conserving the planarity and angles
at the intersections and used Rπ/20 to obtain an hyper-
graph structure. The resulting hypergraph contains 1985
streets originating from 9718 edges and 7337 vertices with
24 percent of sampling junctions.

A. First order topology

Let C = ((V,E), H)) be a city and N(k) = ]{v ∈
C,N(v) = k} be the number of vertices of degree k in C.
The set V2 (junctions) should not be taken into account
since it only represents sampling artifacts to preserve the
shape of streets. In [8] the histogram of N is studied by
means of an exponential tail of distribution. Nonetheless,
this distribution (Fig. 4) is very peaked in 3 or in 4. And
it is sufficient to describe the normalized histogram N̄ by
the ratio

rN =
N(1) +N(3)∑

j 6=2N(j)
(8)

which allows to discriminate quickly whether the city had
been planned (rN ' 0 in the limit case) or not. Indeed
a planned city is filled with a homotopy of a rectangular
grid (only N̄(4) 6= 0 ). This is clearly useful to settle
buildings but also sticks to human perception of space
since we have the intuition of left - right / front - behind.
In unplanned cities(organic will be the dedicated word
in IV to emphasize the comparison with living systems
) i.e. created by the interaction between unconcerted
settlements, there is little probability for streets segments
to be coherent and thus rN ' 1.
Following [13] we characterize the topology of a city by
its ”meshedness coefficient”. It’s easy to count v and
e then f deduces from Euler’s formula. Given V , the
maximum number 2.s − 5 of faces is obtained by the
Greedy Triangulation algorithm [13]. So the quantity
M = (e− v+ 1)/(2.v− 5) equals to 0 if the city is a tree
and is close to 1 if it is a highly connected graph. For
real cities [12] M typically ranges between 0.08 and 0.35.
To be coherent with our preceding remark we should not
take junctions into account. It has no incidence on the
numerator but we have to change 2.v − 5 into 2.v.(1 −
N̄(2))− 5

M3 =
e− v + 1

2.v.(1− N̄(2))− 5
(9)
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FIG. 4. The histograms of degrees’ distribution in Amiens
(whole city and center). We observe that both distributions
are peaked in 3 even in the more regular city centre, where
the number of connections 4 is still half. The large number of
2 comes from straightening, especially in the suburb curved
streets and should not be taken into account.

M3 is quite small because of the general lack of triangles
in the topology of a city. As a trapezoid contains two tri-
angles, we rescale it in M4 = 2M3 whose maximum is hit
when the considered city contains the maximal number
of trapezoids. Amiens appears as an ”average” organic
city, with a meshdness coefficient of 0.41 (0.54 when re-
stricted to the center) and rN = 0.79 (0.68 in the center).

B. Second-order topology

The streets H induce a particular topology. In [12] its
study is referred as the ”dual approach”. We use here the
expression ”second order topology” since it is a derived
topology. Moreover, as faces are the dual of vertices,
the dual of a space is a space containing the same infor-
mation. We prefer to keep back the word ”duality” to
express this idea: ” the mass of a city (buildings, houses,
parks) is the dual of the street system” which could refer
to the work of [1, 2].

Let us call topological distance of C the function dtopC :
H ×H −→ N recursively defined by:{

dtopC (h1, h2) = 0 ifh1 = h2

dtopC (h1, h2) = min
h∈H,h∩h2 6=∅

dtopC (h, h1) + 1 otherwise

(10)
The topological distance counts the number of times one
needs to turn to go from a street to another one.
The topological average efficiency of a street h0 is :

d̄topoC (h0) =
1

]H

∑
h∈H

dv(h, h0) (11)

This formula defines a new centrality measure on the map
similarly to those studied in [11]. A street that minimizes

d̄topoC is then called a center. One drawback of this wholly

topological definition is that, since topological distances
are integers, there are often several streets that can be
defined simultaneously as central streets. Common sense
would then be to take all of these streets as simultaneous
central streets, and to calculate the distance of any street
as the minimum of the distance to any of these streets.
Another way is to weight by the streets length:

d̄topo lengC (h0) =
1

µC(C)

∑
h∈H

||h||.dv(h, h0) (12)

(||h|| is the length of the street h). From this a unique
center hc is defined if the city is not too regular. The
topological radius of the city is then defined by rtopoC =

max dtopo lengC (h, hc) and its diameter by :

diamtopo
C = max

h1,h2∈H
dtopoC (h1, h2) (13)

(Fig. 5) plots with a colormap the distance of each street
to the topological center of Amiens that ends up to be
a part of its highway-belt. This map gives a hierarchical
vision of the space. There is no radial component of
the increase of the topological distance: a scale of long
streets serves the whole city, allowing the variation of the
topological distance to be mainly local.
Added to that the topological radius as the diameter of
the city grows very slowly with the size of the city (14 in
the center of Amiens, 18 in the whole city that is eight
times bigger).

C. Compactness

The fractal theory of cities [2] shows that a city is most
of the time not a compact object. This as much in the
overall boundary of the city as in the spatial distribution
of infrastructures.
We propose here an easy to calculate indicator that ex-
press in the same time the compactness (or fractality) of
the city’s shape and of its street system.
Let A be the area of the convex hull of a city graph C.
µC(C) is the total length of its street system.
The we imagine a city with a square convex hull of the
same area that is to say with a side of length

√
A and a

regular square lattice filling this hull with the same total
length of streets. The area of mesh divided by the area of
the hull is a number between 0 and 1 and one minus this
quantity is a measurement of the idea of compactness in
the city. Thus we define:

Comp = 1− 4A
(µC(C)− 2

√
A)2

(14)

D. Anisotropy

In order to grant an efficient access to physical re-
sources, the street system locally tends to be perpen-
dicular to structuring elements as for example rivers or
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FIG. 5. (Color online). The ”topological maps” of Amiens (left) and its center (right). In each map, the red street is the
topological center and the color of each street refers to its distance to that center. The maximum distance to the center is the
radius of the map (18 in the whole city and 16 in the center). It is striking that this radius increases slowly with the size of
the considered streets-system. We can even infer that the construction of surrounding highway belt (the found center) is made
precisely to keep the topological radius of the city small.

older streets. Then a city is not ”isotropic”.
Let ~u0 ∈ R2 be an arbitrary vector, taken as an angular
origin. For angle α ∈ [0, π] ,

Ψ∗(α) = µC (c ∈ C, ](c, ~u0) ∈ [0, α]) (15)

where ](., .) is the angle measure between two vectors in
[0, π]. It is a measure of the ”total length” of streets in C
that are oriented in directions [0, α]; in the special case of
straight graphs, the impact of each street-segment is pro-
portional to its length. From this, we define the angular

density by Ψ(α) = dΨ∗(α)
dα which representation describes

the anisotropy of the city graph (Fig. 6). We notice a
fuzzy symmetry around the first bisectrix as a result of
the streets local perpendicularity. For an isotropic city,
the angular density ΨI would be a continuous and uni-
form density ΨI(α) = 1

π .
It would be useful to sum up this angular density as a

single normalized indicator. We looked for a bound dis-
tance measure between Ψ and ΨI . Since the observed
distribution Ψ is discrete because of the limited num-
ber of streets segments, measures like

∫
|f − 1

π |
n highly

depends on the size of the bean chosen to estimate the
integral.
Since the angle is definded modulo π, we can ”fold” Ψ :
Ψ(2)(θ) = Ψ(θ)ei.2.θ −

∫
Ψ(θ)ei.2.θ The inertia matrix( ∫

Re(Ψ(2))2 −
∫
Re(Ψ(2))Im(Ψ(2))

−
∫
Re(Ψ(2))Im(Ψ(2))

∫
Im(Ψ(2))2

)
is symetric and positive (from Cauchy-Schwartz’s in-
equality) with two eigenvalues λ1 > λ2 such that A =
1 − λ2

λ1
defines an anisotropy coefficient. As for Amiens,

its anisotropy coefficients varies from 0.42 in the whole
city to 0.71 in the center.

FIG. 6. Angular distribution of Amiens (top left : whole city -
top right : center). We notice on both distributions a four-fold
symmetry. The doubled angular distributions (bottom) look
like ellipsöıds which allows to define the anisotropy coefficient
as the ratio of the eigenvalues of the inertia matrix: A = 0.42
in the whole city and A = 0.71 in the center.

E. Street length

The second order topology leads to think that a city or-
ganizes into a hierarchical way. Consequently we do not
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FIG. 7. The histogram represents the distribution of the log-
arithm of streets length in the center of Amiens. The red plot
is the fitting of this histogram with a gaussian mixture whose
parameters are p− = 0.5, m− = 2.2, σ− = 0.3; m+ = 4.3,
σ+ = 1.2 .

expect an exponential decay in the distribution of street
lengths. As we will see in (IV) a city growth follows
a logic of division of space which leads to a multiplica-
tive phenomenon and thus to consider the distribution of
logL. In Amiens, the logarithm of L is well-fitted by a
gaussian mixture (Fig. 7):

logL ∼ p−.N (m−, σ−) + (1− p−).N (m+, σ+) (16)

with m− < m+. The identification of this model has
been performed with an Expectation Maximization algo-
rithm.
The log-scaling reveals that there is no evident length
scale in a city, there is no pre-existent typical street. A
city auto-scales, its dynamics is purely multiplicative and
could be the result of new streets cutting through former
blocks.
As for the bimodality, a town-planning explanation is
that several transportation modes follow each other
through time and their superposition creates modes in
the distribution of L. This will be put in light by the
morphogenesis model (IV).

IV. A STREETS BASED DYNAMICAL MODEL

This section presents a model of the growth and de-
velopment of a town. The town is reduced to its streets
and we build a dynamical model allowing to add street
segments one after another. As in the previous parts,
the spatial extension of the town and the geometry of
the streets is of prim interest. As pointed out in [14], a
city is above all an out of equilibrium system, that is to
say a dynamical system observed at a random time of its
development.

Our model is first based on three assumptions, two prin-
ciples (installation and connection) and a few parame-
ters. The whole giving a coherent and consistent vision
of the problem. We aim at building a model that can
reproduce several limit cases of urban growth but also
point out continuity between them. The principles and
parameters we use are meaningful, expressed in an inter-
face language that allows the mathematical and physical
community to exchange with town planners, architects
and social scientists.
This part develops the model in the quite general case
of an organic development of the city on flat lands, case
into which we can easily translate our assumptions into
analytical procedures.

A. Hypothesis

As a dynamical system and a geometrical graph, we
will see a city as a function C : R+ −→ GC ⊂ Cd with
C(t) = {V (t), E(t)}. Then we make the following postu-
lates on the evolution of C :

P1: A city is the result of a sequence of operations oc-
curring at increasing times (ti)i∈N such that :

C(t) = C(ti) ∀t ∈ [ti, ti+1[

P2: Infrastructures are conserved:

C(t1) ⊆ C(t2) if t1 ≤ t2

P3: There exist two functions Pt (price) and Vt (poten-
tiality) such that the city is a compromise between
them:

C(t+ ∆t) = argmin
c ⊂ C(t)

Pt(c− C(t)) ≤ 0

Vt(C(t), c)

Functions C and P are not obvious to define. They
should be in a ”microscopic” point of view aggregation of
economical parameters. We can avoid developing them
if we observe a city’s growth is determined by ”macro-
scopic” insights:

Its planning: A city may be organic (the sum of local
and independent phenomena: streets are added in-
dependently with no visibility on a global planning)
or centralized (a global authority decides of the co-
herent and simultaneous addition of several streets
on a large surface).

Its construction: The capacity to add new elements to
the map, build new streets.

Its organization: From a random settlement to a
highly structured one.

Its sprawling: A city has to make a compromise be-
tween its inner development and outer growth.

We will consider here the case of organic growth.
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B. Organic growth of a city

The algorithm below simulates a city’s growth within
the individual settlement hypothesis.
Under this assumption, each settlement (generic term to
designate a commercial infrastructure, a private individ-
ual...) is added at a given time and at a given location
then connects to the existing infrastructures.
The main idea is that the city C(t) induces a spatial po-
tential field describing the attractiveness of any point of
the available space. A new settlement (either an indi-
vidual settler or a facility) has its own policy (IV B 3) of
choice with respect to this potential. After having cho-
sen its location, it connects to the existing street system.
This model explicitly decouples the problems of position-
ing and of connecting.
In this section we will model how the geometry of the
current city induces a potential field, how a new settle-
ment can be connected to the city and at last how we can
tune the behavior of settlements by a few parameters.

1. Potential field

For each point x in the available space the potential
PC→. quantifies to what extent x is a good choice to
locate a new center. This potential should mimic the
following ideas:

• A large scale behavior such that the global attrac-
tion of a part of the city should be proportional
to the global mass of infrastructures in place and
slowly decrease with some distance d : PC→x ∝
−

∫
dµC

dγ(x,C)

• A very short scale behavior that forbids a new
center to be located on existing infrastructures:
PC→x = +∞

• A medium scale deduced from the two previous
ones, that should display some local minimum.

Thus we have chosen among several possible fields (Fig.
8):

PC→x =

(
α

dmin(x,C)
− β√

dmin(x,C)

)∫
dµC√
d⊥(c, x)

(17)
dmin(x,C) = minc∈C (x, c) is used in (Eq. 17) so that
the rejecting zone is hard : there is a tube around the
city where new settlements are impossible. The radius of
this tube is λ0 = (α/β)

2
.

d⊥(x, c) is the ||.||1 norm in the local basis formed by the
unitary tangent and the normal to C in c. The use of such
a distance simplifies integral calculus compared to euclid-
ian distance. Towards ∞, PC→x ∼ β

d(x,C) and between

those to extreme positions, interferences between streets
segments produce local minima. To choose parameters

FIG. 8. (Color online). The level lines of the potential field
for a city reduced to a single segment of length 1with λ0 = 1
and β = 10.

α and β, one sets λ0 the hard rejection radius and β the
long-range influence. The choice of β influences the local
geometry of the city but won’t be discussed here.
There are a lot of possible potential. We have used here
one that fulfils to conditions we set and that allows an
explicit calculus of the integral. Further dissucussions
would be about the choice of the used distance and the
decay exponent γ.

2. Connection

Once a settlement is added in a location x, it links to
the existing network C. Not all connections are eligible.
From a point x we define the visible set of points:

Vx|C {x ∈ C, [c x] ∩ C = {c}} (18)

And the optimal set of points from x of a part E of C:

Ėx = {e ∈ E ∃ε | ∀e′ ∈ E ∩ c⊕Bε, d(x, e) ≤ d(x, e′)}
(19)

New connections are made between x and points in the
optimal visible set ˙Vx|C . This one being a finite set in-
cluded in C ∪ (x⊥C) where x⊥C is the set of orthogonal
projections of x on the city. To avoid that two connec-
tions are too close from each other, we introduce the rel-
ative neighborhood. In a general way, if P is a point and
E a points set. Then s ∈ E is said to be in the relative
neighborhood of P (s ∈ RN [E||P ]) if and only if [14]

∀u ∈ S, d(P, s) ≤ max{d(u, P ), d(u, s)} (20)

ie there is no point both closer to s and to P . All candi-
dats to become new connections are segments from x to
RN( ˙Vx|C ||x): [x,RN(C||x)].
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3. Parameters

The tuning of those parameters will be discussed in
(V)

a. Organization The global field induces minima.
These minima represent points where it is the most in-
teresting to settle.
The question is to find a parameter Pe that describes
whether the city is organized or not. The idea is that
when a city is organized it sticks strictly to optimal set-
tlement places and when it is purely unorganized, new
settlements are added at random without any influence
of the potential field.
That is why a new settlement is selected by a Monte
Carlo method with a number n of iterations and the new
point is be chosen as X = Argminn P (Xi). For random
cities n is close to 1 and for organized one it is much
higher.
Let W be the area of a part of the plan that con-
tains the current city, let X1, ..., Xn be n points on
this part, uniformly and independently chosen. And let
X = argmin P (Xi). Then let

Pe = P(|X −Argmin P )| ≤ e) (21)

represent the probability that the Monte Carlo method
throws a point in a radius e of a local minimum.
We want to give Pe as an input parameter and traduce it
into an iterations number. Let N be the number of local
minima. If e is quite small:

Pe ≈ 1−
(
W −N.π.e2

W

)n
(22)

n ' log (1− Pe)
e2

.
W

N.π
(23)

n is estimated roughly by noticing that a local minimum
is often due to the interaction between two close streets
segments: n ∼ 3.v since 3 is roughly the average connec-
tivity number of intersections.

b. Connection and construction There are typically
about four or five streets segments in [x,RN(V+||x)] for
a new center x. If the city shapes as a slum it would
be tree like so we link the number of streets segments
indeed added with the construction ω ∈ [0, 1] of the city.
We sort segments in [x,RN(V+||x)] by increasing length :
(s1, ..., sn). s1 is drawn with probability 1. n′ ∼ B(ω, n−
1) + 1 and segments s2, ..sn′ are also added. If ω = 1
every admissible segment is added and if ω = 0 only the
shortest one.

c. Sprawling When constructing with a rejection ra-
dius λ0, the city gets a typical mesh width. If at a par-
ticular urban operation a potential field with a rejection
radius of Kλ0 with K > 1 is considered then the city’s
inner meshes will appear as filled up with the rejection
zone of this potential field and new points of interest will
place outside the city.

With this observation we will consider that in a propor-
tion fext centers are added with respect to a potential of
rjecting radius Kextλ0. This creates foils at the out-skirt
of the city and thus an extension of the city that repre-
sent for instance an industrial zone which need a large
surface.

d. Refinements To enhance the realism of this
model, some empirical parameters are added.
The length of a new street segment is bounded to lmax =
klmax

λ0. This can avoid too long connections that are
costly. Possibly lmax =∞
The windows W out of where new settlements are chosen
can be whether definitely set (Fig. 9) whether dynami-
caly change with the overall city (Fig. 11) and (Fig. 13).
Since a Monte-Carlo method is used to pick new centers,
there is a very little probability that a new settlement
is added in line with an existing street. If geometrically
this does not have much consequences, it may strongly
change the local topology. That is why, if an orthogonal
projection is in a radius cλ0 with typically c ' 0.3 of
an intersection that is visible from the center then this
orthogonal projection is removed. This rises the vertices
degree and allows longer streets.

V. A FEW SIMULATIONS

To summarize an individual simulation of the city
growth we need to provide our algorithm with several
parameters:

1. The number of settlements: N

2. The organization probability Pe

3. The radius of the rejecting tube: λ0

4. The long scale influence: β

5. The construction: ω

6. The sprawling factor Kext and the sprawling prob-
ability fext

Notice that only four parameters will actualy shape the
simulated city (Pe, β, ω, fext the others being scaling
parameters and that the influence of β won’t be discussed
here.

A. Simulations with constant parameters

(Fig. 9) shows the result of 16 simulations. The organi-
zation probability Pe and the construction ω are varying
jointly when the same number of operations N = 80, the
same rejecting radius λ0 = 10m, the same available space
( a square with an area of 1.6 km2), the same initial city
(a segment of length 20 m at the center of the available
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FIG. 9. Simulations of the morphogenesis model with con-
stant parameters with variation of the organization Pe and
the construction ω. On each thumbnail, the rejecting radius
is λ0 = 10m, there is no sprawling: k = 0, the number of
settlements is N = 80 and the available space is bound in a
square with sides of 400m. The red and bold segment repre-
sents an initial street-segment and a scale of 20 meters.

space) and the same extension probability of O are used.
The first result is that this model is able to reproduce
very different type of growth with very few ”physical”
parameters.
We observe on this matrix representation that the meshd-
ness M4 (III) is an increasing function of both Pe and ω
(Tab. I). This result has been obtained by averaging the
meshdness coefficient of 30 simulations for each couple
(Pe, ω). Added to that the standard deviation of M4

for each couple is of 4 percent so that this coefficient is
characteristic of the conditions of simulation. Contrary
to that, the anisotropy coefficient A is almost the same
in each case (between 0.31 and 0.46) with a large stan-
dard deviation of 20 percent. This A is quite large: for
the first iterations some directions have to be arbitrary
chosen, which creates favoured directions. Of course the
organic ratio rN is in every case close to 1.
When ω ' 0, the resulting simulations are to be com-
pared to the Saffman-Taylor instability. It seems when
ω ' 0 that only a bounded number of ramifications are
possible from the initial segment (4 on this figure) as
if first created branches shielded the initial center from
newer ones. When ω > 0, the resulting cities are to
be compared to crack patterns: their dynamics follows
a logic of division / subdivision of space. Interestingly,
the Chinese town of Xi’an (Fig. 10) has grown on a
regular grid with a large mesh length with several pop-
ulations that have different characteristics. The result is
a gradient of meshdness coefficient, from almost 0 in the
south-west to almost 1 in the top-right.

ω Pe 0 0.5 0.8 0.99999

1 0.37 0.43 0.46 0.48

0.6 0.26 0.31 0.33 0.36

0.3 0.14 0.16 0.18 0.20

0 0 0 0 0

TABLE I. Variation of the meshdness coefficient M4 = 2(e−
v + 1)/(2.v.(1 − N̄(2)) − 5) for the 16 simulated cities. Each
result is the averaging of 30 simulations. The variation for
each case is almost constant equal to 0.04. M4 is a increasing
function of both Pe and ω.

(Fig. 11) presents a city evolving with λ0 = 10m,
K = 10, Kf = 0.1, Pe = 0.8, ω = 0.7. The regular need
of larger surface for activities such as industries, big in-
stitutions, etc. is well reproduced here. During the his-
tory, as the development of the city center progresses, it
eventually absorbs the peripheral larger surfaces, to split
them into smaller surfaces, with thus new larger places
appearing at the new periphery. This reproduces and ex-
plains the situation of economical zones always outside
at the periphery of towns. It explains as well the succes-
sive subdivision of space, that leaves so many traces, first
in the log normal distribution of streets length but also
in the hierarchical distributions of streets (Fig. 12). For
this simulation, the ratio rN is equal to 0.93 so that the
term ”organic” fits. The meshdness coefficient M4 = 0.48
is quite close to Amien’s (between 0.41 and 0.54) as the
anisotropy (0.69 to be compared to 0.71 in the center of
Amiens).

FIG. 10. The Chinease town of Xi’an in 1949, whose various
subdivision patterns inside a regular grid recall variations in
the parameters of the morphogenesis model.
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FIG. 11. (a, b, c, d) : four steps in the development of
the city (e )with 600 urban operations. For this simulation,
λ0 = 10m, K = 10, Kf = 0.1, Pe = 0.8, ω = 0.7 and the
windows is adapted to the size of the current city. . The
main phenomenon at work is the dynamics between the inner
development and the extension of the city that creates two
hierarchical scales.

B. Simulations with varying parameters: the city’s
history

Constant parameters are not realistic to model a real
city, this one being shaped by its history which is from
the morphogenetic point of view a variation of input pa-
rameters.
We represent the history of a city by a piecewise constant
function t→ (Pe, ω, lmax, fext,K, β, λ0).
For instance, the city of (Fig. 13) has been obtained by
simulating at first a city with a low construction and no
sprawling (ω = 0.2 and fext = 0) and then changed to a
sprawling and constructed city (ω = 0.8 and fext = 0.15).
The simulation starts with two perpendicular streets with
a length 20 times larger than λ = 10m. These pre-
existing streets are structuring elements as could be a
river. This kind of variation in parameters recalls Cas-
bah in Maroco where the historical center of the city is
a souk.

This model is the first step of a very simple model.
We can see that with only one type of event (new settle-
ment) and a few parameters a great variety of structures
can be obtained. More refinements can be added. The
first one is the planned creation of a highway belt as in
Amiens or an enclosure using the punctual addition of
the convex hull of the current city. The second possibil-
ity would be to add also the ”Hausmann” effect, allowing
to split pre-existing streets with new street patterns. We
could also consider distinct populations with interaction
rules that build a city in the same time. These three
points are going to be developed in a second version of
the morphogenesis model.

FIG. 12. (Color online). The distribution of the logarithm of
streets length (top) and the second order topology (bottom)
for the resulting city of simulation (Fig. 11). As for real
cities (Amiens), the second order topology presents a bounded
hierarchical representation of the city and the streets length
is well-fitted by a mixture of log-normal random variables.

VI. CONCLUSION

We have reduced cities to the map of their streets and
shown that a lot of information can be deduced from this
representation without additional data such as popula-
tion dispersion, width of streets, ground specific use. To
this we have introduced the notion of geometrical and
straight graph with a canonical hypergraph structure to
define difference between streets segments and streets.
Added to that, a borelian measure allows seeing a citiy’s
map as a ”continuous graph” or likewise as an object
both relational and geometrical (II).
While [3] has looked at the city as a pure graph and [11]
has taken into account its spatiality, we have explored the
geometrical aspect of the city, its topology being only the
skeleton that holds it up.
From this point of view we have shown that despite an
evident diversity on their overall shapes (anisotropy, com-
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FIG. 13. A city developing with varying parameters from two
perpendicular long structuring elements. The historic center
of the city has been built with a low construction parameter
and no sprawling (ω = 0.2 and fext = 0) to recall the tree
aspect of a central souk in the Casbah. Then parameters
are changed to ω = 0.8 and fext = 0.15 which products an
industrial crown.

pactness, first-order topology), a few fundamental rules
can explain cities’ morphogenesis (IV). The urban in-
frastructure differentiates to adapt to the local geogra-
phy and to fulfill the constraints of lodging people while
maintaining their efficient transportation. The model de-
veloped in IV and illustrated in (V) shows that structural
properties of cities stand out of the local constraints and
behaviors that define the dynamics of cities. For instance

the log scaling of resulting street system is a global, non
trivial property that validates the model. Even in the
organic case when there is no global and coherent plan
the topological radius of the city increases slower than
the size of the city.
To simulate cities’ dynamics, we have uncoupled the
space potential induced by the current infrastructure, the
policy of connections and the freedom a new settlement
(generic term to refer to a commercial infrastructure, a
private individual...) ought to take on the two previous
rules.
This morphogenetic model calls for a lot of outcomes:
study of several potential fields, comparison to a large
data basis of existing cities, following of the evolution
of parameters as the city grows. It seems not realistic
to seek to find back the parameters of the model from
a given map: the morphogenesis is quite chaotic which
prevents numerical stability in inversion methods.
The city appears as the result of a spatial division pro-
cess, whether it be in the centralized case or in the or-
ganic one. In the centralized case, the reason wants the
street system to be the homotopy of a square grid to
adapt to the local geography and infrastructure, which
can be seen afterwards as the result of a division process.
Indeed in the organic case, the city’s layout comes from
the duality between the city’s expansion and the grain-
ing of former large cadastres by new settlements. And
from this local division process emerge some non trivial
global phenomena (log scaling of streets, low topologi-
cal radius, equivalence of fly-bird and shortest path dis-
tances...). One can thus say that the division of space
is a natural response of cities to fulfill their functional
goals.
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